Partition congruences and the Andrews-Garvan-Dyson crank.
نویسنده
چکیده
In 1944, Freeman Dyson conjectured the existence of a "crank" function for partitions that would provide a combinatorial proof of Ramanujan's congruence modulo 11. Forty years later, Andrews and Garvan successfully found such a function and proved the celebrated result that the crank simultaneously "explains" the three Ramanujan congruences modulo 5, 7, and 11. This note announces the proof of a conjecture of Ono, which essentially asserts that the elusive crank satisfies exactly the same types of general congruences as the partition function.
منابع مشابه
ON THE NUMBER OF EVEN AND ODD STRINGS ALONG THE OVERPARTITIONS OF n
A partition of a non-negative integer n is a non-increasing sequence of positive integers whose sum is n. For example, The 5 partitions of 4 are 4, 3 + 1, 2 + 2, 2 + 1 + 1, and 1 + 1 + 1 + 1. To explain Ramanujan’s famous three partition congruences, the partition statistics, the rank (resp. the crank) were introduced by Dyson [8] (resp. Andrews and Garvan [3]). Atkin and Garvan [5] initiated t...
متن کاملThe odd moments of ranks and cranks
have motivated much research. Here, p(n) denotes the number of partitions of n. In particular, toward a combinatorial explanation of the above congruences many partition statistics have been studied. Among them, the rank suggested by F. Dyson [6] and the crank suggested by the first author and F.G. Garvan [2] have proven successful and their own properties have been extensively studied. Here, t...
متن کاملCongruences for Andrews’ Smallest Parts Partition Function and New Congruences for Dyson’s Rank
Let spt(n) denote the total number of appearances of smallest parts in the partitions of n. Recently, Andrews showed how spt(n) is related to the second rank moment, and proved some surprising Ramanujan-type congruences mod 5, 7 and 13. We prove a generalization of these congruences using known relations between rank and crank moments. We obtain an explicit Ramanujan-type congruence for spt(n) ...
متن کاملCombinatorial Interpretations of Congruences for the Spt-function
Let spt(n) denote the total number of appearances of the smallest parts in all the partitions of n. In 1988, the second author gave new combinatorial interpretations of Ramanujan’s partition congruences mod 5, 7 and 11 in terms of a crank for weighted vector partitions. In 2008, the first author found Ramanujantype congruences for the spt-function mod 5, 7 and 13. We give new combinatorial inte...
متن کاملOn the Andrews-stanley Refinement of Ramanujan’s Partition Congruence modulo 5 and Generalizations
In a recent study of sign-balanced, labelled posets, Stanley introduced a new integral partition statistic srank(π) = O(π)−O(π′), where O(π) denotes the number of odd parts of the partition π and π′ is the conjugate of π. In a forthcoming paper, Andrews proved the following refinement of Ramanujan’s partition congruence mod 5: p0(5n+ 4) ≡ p2(5n+ 4) ≡ 0 (mod 5), p(n) = p0(n) + p2(n), where pi(n)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 102 43 شماره
صفحات -
تاریخ انتشار 2005